
Hierarchy Builder:
Algebraic hierarchies
made easy in Coq with Elpi

Cyril Cohen (Inria), Pierre Roux, Kazuhiko Sakaguchi, Enrico Tassi

JFLA 2023
February 2nd, 2023

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 1



Structures in Mathematics

Standard definition:
• A carrier in Set / Type,
• A set of constants in the carrier, and operations,
• Proofs of the axioms of the structure

E.g. an (additive) monoid is given by
• a carrier T : Type,
• a constant zero : T and a binary operation add : T -> T -> T

• three axioms:
associativity of the addition, left and right neutrality of zero.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 2



Structures in Mathematics

Standard definition:
• A carrier in Set / Type,
• A set of constants in the carrier, and operations,
• Proofs of the axioms of the structure

E.g. an (additive) monoid is given by
• a carrier T : Type,
• a constant zero : T and a binary operation add : T -> T -> T

• three axioms:
associativity of the addition, left and right neutrality of zero.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 2



Dependent Type Theory (e.g. CIC, MLTT, ...)

• Mixes types and terms: forall (n : nat), 'I_n -> 'I_n,
• Equality as a type: eq : forall T, T -> T -> Prop,

Combined with the dependent types: forall n, n + 0 = n

• Record Types:
Record R p1 .. pn : Type := MkR {

f1 : ...
f2 : ...

}.

- The keywords Record and Structure are synonyms for Coq.
- A Class is also a record, but with special meta-data.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 3



Implementations in DTT (unbundled classes)
[MSCS2011]

Class is_monoid T (zero : T) (add : T -> T -> T) := {
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 4



Implementations in DTT (semi-bundled classes)

Class is_monoid (T : Type) : Type := {
zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 5



Implementations in DTT (semi-bundled classes)

Class is_monoid (T : Type) : Type := {
zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Class monoid_is_group T : is_monoid T -> Type :={
opp : T -> T;
subrr : forall x, x + (- x) = 0;
addNr : forall x, (- x) + x = 0;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 5



Implementations in DTT (semi-bundled classes)
Class is_monoid (T : Type) : Type := {

zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Class is_group (T : Type) : Type := {
zero : T;
add : T -> T -> T;
opp : T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;

(* addr0 : forall x, x + 0 = x; (* spurious *) *)
subrr : forall x, x + (- x) = 0;
addNr : forall x, (- x) + x = 0;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 5



Implementations in DTT (bundled record)

Structure monoidType : Type := {
sort :> Type;
zero : sort;
add : sort -> sort -> sort;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 6



Implementations in DTT
(simplified packed classes)

Class is_monoid (T : Type) : Type := {
zero : T;
add : T -> T -> T;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.

Structure monoidType : Type := {
sort :> Type;
class : is_monoid sort;

}.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 7



Implementations in DTT (packed classes)
[TPHOLs 2009]
Record is_monoid (T : Type) : Type := { zero ; ..}.

Structure monoidType : Type :=
{ sort :> Type; class : is_monoid sort }.

Record monoid_is_group T : is_monoid T -> Type := ...

Record is_group (T : Type) := {
monoid_of_group : is_monoid T;
group_of_group : monoid_is_group T monoid_of_group

}.

Structure groupType : Type :=
{ sort :> Type; class : is_group sort }.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 8



Implementation in DTT (other)

Many other possibilities:

• Modules a la OCaml (not first class in Coq!),

• Fully-bundled typeclasses (bad!),

• Telescopes (bad!),

• Records without inference (tedious!),

• ...

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 9



Implementations in proof assistants

The variety of representations is out there!
• Coq/Mathcomp: Packed classes.
• Coq/Math-Classes: Fully unbundled records

(+ special case for varieties).
• Lean3/Mathlib: Semi-bundled records.
• Agda: Bundled and semi-bundled records.
• ...

Representations work hand in hand with tooling.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 10



Implementations in proof assistants

The variety of representations is out there!
• Coq/Mathcomp: Packed classes.
• Coq/Math-Classes: Fully unbundled records

(+ special case for varieties).
• Lean3/Mathlib: Semi-bundled records.
• Agda: Bundled and semi-bundled records.
• ...

Representations work hand in hand with tooling.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 10



Implementations in proof assistants

The variety of representations is out there!
• Coq/Mathcomp: Packed classes inside canonical structures.
• Coq/Math-Classes: Fully unbundled type classes

(+ special case for varieties).
• Lean3/Mathlib: Semi-bundled type classes.
• Agda: Bundled and semi-bundled records.
• ...

Representations work hand in hand with tooling.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 10



More than “just records”

• Coq/Mathcomp 1: canonicals
+ heavy boilerplate + validator [IJCAR K.S. paper]

• Coq/Math-Classes: type classes + boilerplate + hints
• Lean3/Mathlib: type classes + priorities + linter
• Agda: records + open and renaming directives

None of these encoding are straightforward:
• they all need expert knowledge and/or checkers/linters,
• some encodings are unnecessarily verbose,
• some known design problems might be detected too late (e.g.

priority of instance, typeclass indexing, forgetful inheritance, etc)

Hierarchy Builder provides a DSL!

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 11



More than “just records”

• Coq/Mathcomp 1: canonicals
+ heavy boilerplate + validator [IJCAR K.S. paper]

• Coq/Math-Classes: type classes + boilerplate + hints
• Lean3/Mathlib: type classes + priorities + linter
• Agda: records + open and renaming directives

None of these encoding are straightforward:
• they all need expert knowledge and/or checkers/linters,
• some encodings are unnecessarily verbose,
• some known design problems might be detected too late (e.g.

priority of instance, typeclass indexing, forgetful inheritance, etc)

Hierarchy Builder provides a DSL!

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 11



More than “just records”

• Coq/Mathcomp 1: canonicals
+ heavy boilerplate + validator [IJCAR K.S. paper]

• Coq/Math-Classes: type classes + boilerplate + hints
• Lean3/Mathlib: type classes + priorities + linter
• Agda: records + open and renaming directives

None of these encoding are straightforward:
• they all need expert knowledge and/or checkers/linters,
• some encodings are unnecessarily verbose,
• some known design problems might be detected too late (e.g.

priority of instance, typeclass indexing, forgetful inheritance, etc)

Hierarchy Builder provides a DSL!

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 11



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,
• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,

• declare a new structure
- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,
• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,
• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them

• predictability of inferred instance,
• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,

• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchies in formalization
Purpose:

• factor theorems, using the theory of each structure,
• automatically find which structures hold on which types.

Requirements:
• declare a new instance,
• declare a new structure

- above, below or in the middle
- handle diamonds (e.g. monoid, group, commutative or not),
- by amending existing code, or not,

• provide several ways to instantiate them
• predictability of inferred instance,
• robustness of user code with regard to new declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 12



Hierarchy Builder in two bullets

1. Hierarchy Builder provides a DSL to generate and extend
a hierarchy from minimal input.

2. Hierarchy Builder lets you amend a hierarchy without
breaking your code.

Hierarchy Builder adopts the point of view that Type Theory is an
assembly language, and takes care of generating structures in a
uniform way across whole sets of libraries.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 13



Hierarchy Builder in practice

• Hierarchy Builder generates/extends a hierarchy using
Mathematical Components packed class methodology.

• Hierarchy Builder enforces a discipline of mixins and factories to
make client code robust to hierarchy changes.

• Hierarchy Builders lets us encode built-in safety measures (e.g.
detection of overlapping instances)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 14



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Normed Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Arrows represent both
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 15



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Normed Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Arrows represent both
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 15



Structures relating to each other

Examples:
• Monoid ← Group ← Ring ← Field ← ...
• Normed Space → Metric Spaces → Topological Spaces → ...

Going through arrows must be automated.

Arrows represent both
• Extensions: add operations, axioms or combine structures
• Entailment/Induction/Deduction/Generalization.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 15



More examples [IJCAR]

”Calculus”
structures

”Algebraic”
structures

PartialOrder

Lattice

TotalOrder

AddGroup

Lmodule
(Com)(Unit)Ring

IntegralDomain

Field OrderedDomain

OrderedField

RealClosedField ArchimedeanField

TopologicalSpace

UniformSpace

Complete

NormedAddGroup

NormedModule

CompleteNormedModule

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 16



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



Structure extension vs Structure entailment

Structure extension Structure entailment

• Compositional: no need to
start from scratch every time.
(E.g. the product of two
groups is a group)

• Noisy internal definition of a
structure. (E.g. defining a
commutative monoid from a
monoid, one gets an
unnecessary axiom),

• Non-robust when adding
new intermediate structures,

• Flexible: no need to cut
structures into small bits,

• Robust: we can fix
operations and axioms once
and for all.

• Not suitable for inference:
Major breakage when
arbitrary entailment is
automatic. (cf IJCAR
Competing Inheritance Paths
in Dependent Type Theory)

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 17



HB Design
The best of two the worlds:

• Extension, through mixins for automatic inference
• Entailment, through factories for smart instantiation

Five primitives:
1. HB.mixin Record <mixin name> T of <dependencies> := {..}.

2. HB.factory Record <factory name> T of <dependencies> := {..}.
3. HB.builders Context T (f : <factory name> T). ... HB.end.

4. HB.structure Definition <structure name> :=
{ T & <dependencies>}

5. HB.instance Definition <name> : <axioms name> <type> := ...

see https://github.com/math-comp/hierarchy-builder

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 18

https://github.com/math-comp/hierarchy-builder


HB Design
The best of two the worlds:

• Extension, through mixins for automatic inference
• Entailment, through factories for smart instantiation

Five primitives:
1. HB.mixin Record <mixin name> T of <dependencies> := {..}.

2. HB.factory Record <factory name> T of <dependencies> := {..}.
3. HB.builders Context T (f : <factory name> T). ... HB.end.

4. HB.structure Definition <structure name> :=
{ T & <dependencies>}

5. HB.instance Definition <name> : <axioms name> <type> := ...

see https://github.com/math-comp/hierarchy-builder

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 18

https://github.com/math-comp/hierarchy-builder


HB Design
The best of two the worlds:

• Extension, through mixins for automatic inference
• Entailment, through factories for smart instantiation

Five primitives:
1. HB.mixin Record <mixin name> T of <dependencies> := {..}.

2. HB.factory Record <factory name> T of <dependencies> := {..}.
3. HB.builders Context T (f : <factory name> T). ... HB.end.

4. HB.structure Definition <structure name> :=
{ T & <dependencies>}

5. HB.instance Definition <name> : <axioms name> <type> := ...

see https://github.com/math-comp/hierarchy-builder

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 18

https://github.com/math-comp/hierarchy-builder


A very short example

https:

//github.com/math-comp/hierarchy-builder/tree/master/examples/GReTA_talk

HB.mixin Record is_monoid (M : Type) := {
zero : M;
add : M -> M -> M;
addrA : associative add; (* add is associative . *)
add0r : forall x, 0 + x = x; (* zero is neutral *)
addr0 : forall x, x + 0 = x; (* wrt add. *)

}.
HB. structure Definition Monoid := { M of is_monoid M }.

HB. instance Definition Z_is_monoid : is_monoid Z
:= is_monoid .Build Z 0%Z Z.add

Z. add_assoc Z. add_0_l Z. add_0_r .

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 19

https://github.com/math-comp/hierarchy-builder/tree/master/examples/GReTA_talk
https://github.com/math-comp/hierarchy-builder/tree/master/examples/GReTA_talk


Breaking down monoid
We split the monoid structure into a semi-group and a monoid
HB.mixin Record is_semigroup (S : Type) := {

add : S -> S -> S;
addrA : associative add;

}.
HB. structure Definition SemiGroup :=

{ S of is_semigroup S }.

HB.mixin Record semigroup_is_monoid (M : Type)
of is_semigroup M := {

zero : M;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
HB. structure Definition Monoid :=

{ M of is_semigroup M & semigroup_is_monoid M }.

But we must provide is_monoid again.
Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 20



Recovering the lost mixin (is_monoid)
It becomes a factory with the exact same contents as before
HB. factory Record is_monoid (M : Type) := {

zero : M;
add : M -> M -> M;
addrA : associative add;
add0r : forall x, 0 + x = x;
addr0 : forall x, x + 0 = x;

}.
HB. builders Context (M : Type) (f : is_monoid M).

HB. instance Definition is_monoid_semigroup
: is_semigroup M := ... (* trivial *)

HB. instance Definition is_monoid_monoid
: monoid_of_semigroup M := ... (* trivial *)

HB.end

Factories can only be used at instantiation time:

HB. instance Definition Z_is_monoid : is_monoid Z := ...

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 21



Why use HB?

• High-level commands to declare structures and instances,
easy to use.

• Predictable outcome of inference,
• Takes into account the evolution of knowledge

- which is formalized, and
- which the user has.

The two knowledge do not need to be correlated.
• Robustness with regard to new declaration and even changes of

internal implementation.

• One also can envision changing the target representation, the
design pattern at use, without changing the surface language
and declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 22



Why use HB?

• High-level commands to declare structures and instances,
easy to use.

• Predictable outcome of inference,
• Takes into account the evolution of knowledge

- which is formalized, and
- which the user has.

The two knowledge do not need to be correlated.
• Robustness with regard to new declaration and even changes of

internal implementation.
• One also can envision changing the target representation, the

design pattern at use, without changing the surface language
and declarations.

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 22



Applications of Hierarchy Builder

• Mathcomp 2.0+alpha1
Porting the Mathematical Components library to HB
Reynald Affeldt, Xavier Allamigeon, Yves Bertot, Quentin Canu,
CC, Pierre Roux, Kazuhiko Sakaguchi, Enrico Tassi, Laurent
Théry, Anton Trunov.
https://hal.inria.fr/hal-03463762/ and
https://github.com/math-comp/math-comp/pull/733

• Mathcomp Analysis (released versions)
cf https://github.com/math-comp/analysis

• Monae: Monadic effects and equational reasoning in Coq
cf https://github.com/affeldt-aist/monae

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 23

https://hal.inria.fr/hal-03463762/
https://github.com/math-comp/math-comp/pull/733
https://github.com/math-comp/analysis
https://github.com/affeldt-aist/monae


Applications of Hierarchy Builder

• Mathcomp 2.0+alpha1
Porting the Mathematical Components library to HB
Reynald Affeldt, Xavier Allamigeon, Yves Bertot, Quentin Canu,
CC, Pierre Roux, Kazuhiko Sakaguchi, Enrico Tassi, Laurent
Théry, Anton Trunov.
https://hal.inria.fr/hal-03463762/ and
https://github.com/math-comp/math-comp/pull/733

• Mathcomp Analysis (released versions)
cf https://github.com/math-comp/analysis

• Monae: Monadic effects and equational reasoning in Coq
cf https://github.com/affeldt-aist/monae

Cohen, Roux, Sakaguchi, Tassi – Hierarchy Builder – February 2nd, 2023 23

https://hal.inria.fr/hal-03463762/
https://github.com/math-comp/math-comp/pull/733
https://github.com/math-comp/analysis
https://github.com/affeldt-aist/monae

